On ±1 eigenvectors of graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal eigenvectors of irregular graphs

Let G be a connected graph. This paper studies the extreme entries of the principal eigenvector x of G, the unique positive unit eigenvector corresponding to the greatest eigenvalue λ1 of the adjacency matrix of G. If G has maximum degree ∆, the greatest entry xmax of x is at most 1/ q 1 + λ1/∆. This improves a result of Papendieck and Recht. The least entry xmin of x as well as the principal r...

متن کامل

Eigenvectors of Random Graphs: Nodal Domains

We initiate a systematic study of eigenvectors of random graphs. Whereas much is known about eigenvalues of graphs and how they reflect properties of the underlying graph, relatively little is known about the corresponding eigenvectors. Our main focus in this paper is on the nodal domains associated with the different eigenfunctions. In the analogous realm of Laplacians of Riemannian manifolds,...

متن کامل

On Non-localization of Eigenvectors of High Girth Graphs

We prove improved bounds how localized an eigenvector of a high girth regular graph can be, and present examples showing that these bounds are close to sharp. This study was initiated by Brooks and Lindenstrauss [BL13] who relied on the observation that certain suitably normalized averaging operators on high girth graphs are hyper-contractive and can be used to approximate projectors onto the e...

متن کامل

Ela Principal Eigenvectors of Irregular Graphs∗

Let G be a connected graph. This paper studies the extreme entries of the principal eigenvector x of G, the unique positive unit eigenvector corresponding to the greatest eigenvalue λ1 of the adjacency matrix of G. If G has maximum degree ∆, the greatest entry xmax of x is at most 1/ q 1 + λ1/∆. This improves a result of Papendieck and Recht. The least entry xmin of x as well as the principal r...

متن کامل

Entrywise Bounds for Eigenvectors of Random Graphs

Let G be a graph randomly selected from Gn,p, the space of Erdős-Rényi Random graphs with parameters n and p, where p > log 6 n n . Also, let A be the adjacency matrix of G, and v1 be the first eigenvector of A. We provide two short proofs of the following statement: For all i ∈ [n], for some constant c > 0

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2016

ISSN: 1855-3974,1855-3966

DOI: 10.26493/1855-3974.1021.c0a